cyclic redundance check - significado y definición. Qué es cyclic redundance check
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es cyclic redundance check - definición

Cyclic Number; Cyclic numbers

cyclic redundancy check         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
<algorithm> (CRC or "cyclic redundancy code") A number derived from, and stored or transmitted with, a block of data in order to detect corruption. By recalculating the CRC and comparing it to the value originally transmitted, the receiver can detect some types of transmission errors. A CRC is more complicated than a checksum. It is calculated using division either using shifts and exclusive ORs or table lookup (modulo 256 or 65536). The CRC is "redundant" in that it adds no information. A single corrupted bit in the data will result in a one bit change in the calculated CRC but multiple corrupted bits may cancel each other out. CRCs treat blocks of input bits as coefficient-sets for polynomials. E.g., binary 10100000 implies the polynomial: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 0*x^2 + 0*x^1 + 0*x^0. This is the "message polynomial". A second polynomial, with constant coefficients, is called the "generator polynomial". This is divided into the message polynomial, giving a quotient and remainder. The coefficients of the remainder form the bits of the final CRC. So, an order-33 generator polynomial is necessary to generate a 32-bit CRC. The exact bit-set used for the generator polynomial will naturally affect the CRC that is computed. Most CRC implementations seem to operate 8 bits at a time by building a table of 256 entries, representing all 256 possible 8-bit byte combinations, and determining the effect that each byte will have. CRCs are then computed using an input byte to select a 16- or 32-bit value from the table. This value is then used to update the CRC. Ethernet packets have a 32-bit CRC. Many disk formats include a CRC at some level. (1997-08-02)
cyclic redundancy code         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
Cyclic redundancy check         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.

Wikipedia

Cyclic number

A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are

142857 × 1 = 142857
142857 × 2 = 285714
142857 × 3 = 428571
142857 × 4 = 571428
142857 × 5 = 714285
142857 × 6 = 857142